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Water wave diffraction by a surface strip
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The two-dimensional problem of wave diffraction by a strip of arbitrary width is
investigated here in the context of linearized theory of water waves by reducing it
to a pair of Carleman-type singular integral equations. These integral equations have
been solved earlier by an iterative process which is valid only for a sufficiently wide
strip. A new method is described here by which solutions of these integral equations
are determined by solving a set of four Fredholm integral equations of the second
kind, and the process is valid for a strip of arbitrary width. Numerical solutions of
these Fredholm integral equations are utilized to obtain fairly accurate numerical
estimates for the reflection and transmission coefficients. Previous numerical results
for a wide strip are recovered from the present analysis. Additional results for the
reflection coefficient are presented graphically for moderate values of the strip width
which exhibit a less oscillatory nature of the curve than the case of a wide strip.

1. Introduction
There is a considerable amount of interest in investigating surface wave interaction

with sea ice. In Antarctica, a region between the ocean and the shore-fast sea ice
exists, known as Marginal Ice Zone, which consists of continuous sheets of ice as
well as broken ice. The latter can be viewed as consisting of non-interacting floating
materials having no elasticity, i.e. it can be modelled as an inertial surface. In the
present work we consider diffraction of surface waves by discontinuities in the surface
boundary conditions which arise due to the presence of two types of inertial surfaces.
The intermediate surface is finite in width and is surrounded by another inertial
surface of different surface density. Both the surfaces extend uniformly and infinitely
in one horizontal direction. Therefore, from a two-dimensional point of view this
problem falls into the category of wave diffraction by a strip.

The problems of wave diffraction involving strips or slits have been the subject
of several investigations in acoustics, electromagnetism, elasticity and hydrodynamics
(Stoker 1957; Jones 1964; Williams 1982). Although several analytical and numerical
treatments are available, the Wiener–Hopf (WH) technique (Noble 1958) is perhaps
the key tool for solving this class of problems. When the strip is semi-infinite,
the boundary value problem is reduced to a two-part WH problem which can be
solved to give an exact solution. For a finite strip the corresponding boundary value
problem transforms to a three-part WH problem whose solution can be obtained
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only approximately on the assumption of a wide strip. Shanin (2001, 2003) considered
diffraction by a single strip as well as by two identical strips. His technique involves
reduction of the WH functional relationship to solving certain ordinary differential
equations. A residue calculus technique was used by Linton (2001) and Chung &
Linton (2005) to examine scattering of water waves by a rigid finite dock and by a
finite gap in a floating elastic plate in water of uniform finite depth.

In the context of linearized theory of water waves the problem of wave diffraction
by a floating semi-infinite strip was solved by employing the WH technique by Weitz &
Keller (1950), Gabov, Sveshnikov & Shatov (1989), Goldshtein & Marchenko (1989)
and others. Weitz & Keller (1950) considered wave scattering by a semi-infinite inertial
surface floating on finite-depth water. The case of two infinitely extended immiscible
superposed fluids for which half the interface is covered by an inertial surface and the
other half is free, was considered by Gabov et al. (1989). Peters (1950) investigated
Weitz & Keller’s (1950) problem for normal incidence of the incoming wave and
infinite depth of water. The last two problems were extended to the case of a finite
strip of inertial surface by Kanoria, Mandal & Chakrabarti (1999). They reduced
the problem to a three-part WH problem whose solution was derived asymptotically
for large width of the strip. Evans (1985) presented a method based on solving a
functional equation for investigating water wave scattering by an infinite inertial
surface with a continuously varying surface density.

In order to avoid the complexities of the WH technique, Chakrabarti (2000) derived
an alternative method to study the problem of wave scattering by a semi-infinite
inertial surface floating on deep water. This method used a Fourier analysis which
converted the problem into solving a Carleman singular integral equation. This was
solved explicitly by a technique associated with solving a Riemann–Hilbert problem,
and the exact expressions for the reflection and the transmission coefficients were
finally derived. A similar approach was recently followed by Gayen(Chowdhury),
Mandal & Chakrabarti (2005) to investigate wave diffraction by an ice strip
modelled as a thin elastic plate floating on deep water, resulting in two coupled
singular integral equations. These were solved approximately by an iterative process,
assuming that the breadth of the strip is wide. Numerical estimates of the reflection
and transmission coefficients were obtained and presented graphically against the
wavenumber, revealing their rapid oscillatory nature. This was attributed due to
multiple reflections and transmissions by the two distant ends of the strip.

Here the problem of diffraction by a strip of inertial surface of a particular
surface density lying sandwiched between other inertial surfaces of a different surface
density, is reduced to two Carleman-type singular integral equations following the
above approach. Employing a method involving inversion of the Carleman singular
operator followed by some mathematical analysis, it is found that the solutions of the
above coupled singular integral equations can be determined from the solutions of
a set of four Fredholm integral equations of the second kind. Since these Fredholm
integral equations can be solved numerically in a standard manner, it is obvious
that the original two coupled singular integral equations are now solved for any
width of the strip and thus the original diffraction problem is solved for any
strip width. The mathematical formulation of the problem involves four constants,
including the reflection and transmission coefficients, and these satisfy a system of four
linear equations which are solved numerically. Numerical estimates for the reflection
coefficient |R| are presented graphically. The curve for |R| for a wide strip plotted
following the present analysis almost coincide with the corresponding curves for
|R| plotted following an earlier analysis valid only for wide strips. Curves for |R|
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for moderate values of the strip width are also depicted against the wavenumber,
and display a less oscillatory nature than a wider strip. Curves for |R| for different
situations such as when a strip of inertial surface lies sandwiched between other
inertial surfaces, and when a strip of free surface lies between two inertial surfaces of
the same density, are also depicted graphically.

2. Formulation of the problem
We consider two semi-infinite inertial surfaces of the same surface density ε1ρ

floating on deep water and in between them lies another inertial surface of surface
density ε2ρ(ε1 �= ε2) in the form of a strip of width l. Here ρ is the density of water;
ε1, ε2 are two constants which denote the depth of submergence of the immersed
parts of the two types of inertial surfaces and thus have dimension of length. All the
three surfaces are infinitely extended in one horizontal direction, say the z-direction
so that the problem is two-dimensional in (x, y) coordinates, the x-axis being along
the width of the strip and the y-axis being vertically downwards into the liquid.
Thus the intermediate strip-like surface and the surfaces on its two sides occupy
the regions 0 < x < l, y =0 and (x < 0)

⋃
(x > l), y = 0 respectively. Under the usual

assumption of inviscid, incompressible and homogeneous fluid and the motion in it
to be time-harmonic and irrotational, there exists a velocity potential Re{φ(x, y)e−iωt}
where φ satisfies

∇2φ = 0, y � 0, −∞ < x < ∞, (2.1)

with the bottom condition

∇φ → 0 as y → ∞, (2.2)

and the surface boundary conditions (cf. Appendix I, Weitz & Keller 1950)

K1φ + φy = 0 on y = 0 (−∞ < x < 0)
⋃

(x > l), (2.3)

K2φ + φy = 0 on y = 0, 0 < x < l, (2.4)

where Kj = K/(1 − εjK)(j = 1, 2) with K =ω2/g being the wavenumber. For
0 < εjK < 1, the form of the boundary conditions (2.3) and (2.4) is merely a
modification of the usual free surface condition Kφ + φy = 0 on y =0, and as such
it allows progressive waves to propagate along the inertial surfaces. However, for
εjK � 1, the form of (2.3) or (2.4) becomes different and does not allow progressive
waves along the inertial surfaces. This means that the case εjK � 1 is not important
physically. Thus it will be assumed that the inequality εj < g/ω2 is always satisfied.
This is equivalent to the assumption that the inertial surfaces are sufficiently light to
support small time-harmonic progressive waves of given angular frequency ω. It may
be remarked here that though there are limitations on the use of the present model
involving floating ice, the use of the boundary conditions (2.3) and (2.4) provides a
useful check of limiting cases for more general boundary value problems involving
Laplace equation.

The edge conditions at the two discontinuity points (0, 0) and (0, l) can be expressed
as

φ = O(r)
∇φ = O(1)

}
as r → 0 (2.5)

where r denotes the distance from either of the edges (0, 0) and (0, l). These edge
conditions make the solution of the boundary value problem unique.
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When a train of surface waves represented by exp(−K1y + iK1x) travelling from
the direction of x = −∞ is normally incident on the strip at (0, 0) part of it is reflected
back into the region x < 0, the remaining part being transmitted through the strip
0 < x < l. In this region it undergoes multiple reflection and transmission and finally is
transmitted into the region x > l through the point (0, l). Thus the far-field behaviour
of φ(x, y) is given by

φ →
{

e−K1y+iK1x + Re−K1y−iK1x as x → −∞,

T e−K1y+iK1(x−l) as x → ∞ (2.6)

while in the strip region it has the form

φ = αe−K2y+iK2x + βe−K2y−iK2(x−l) + ψ(x, y), 0 < x < l. (2.7)

In the conditions (2.6) and (2.7), R, T , α, β are unknown constants and ψ(x, y)
is the local non-wavy solution of Laplace’s equation. R and β are the reflection
coefficients due to the discontinuities at the points (0, 0) and (0, l) respectively while
α and T represent the transmission coefficients due to the same discontinuities. It
may be noted that the constants α and β appearing in (2.7) are uniquely defined.

3. Reduction to singular integral equations
In this section, the mixed boundary value problem described above is reduced to

two Carleman singular integral equations over a semi-infinite range. For this purpose
φ(x, y) is represented in the three regions x < 0, 0 <x < l and x > l by making use of
Havelock’s expansion of the water wave potential (cf. Ursell 1947) in the forms

φ ≡ φ1(x, y) = e−K1y+iK1x + Re−K1y−iK1x +
2

π

∫ ∞

0

A(ξ )

ξ 2 + K2
1

L1(ξ, y)eξx dξ, x < 0, (3.1)

φ ≡ φ2(x, y) = αe−K2y+iK2x + βe−K2y−iK2(x−l)

+
2

π

∫ ∞

0

B(ξ )eξ (x−l) + C(ξ )e−ξx

ξ 2 + K2
2

L2(ξ, y) dξ, 0 < x < l, (3.2)

φ ≡ φ3(x, y) = T e−K1y+iK1(x−l) +
2

π

∫ ∞

0

D(ξ )

ξ 2 + K2
1

L1(ξ, y)e−ξ (x−l) dξ, x > l, (3.3)

where A(ξ ), B(ξ ), C(ξ ) and D(ξ ) are unknown functions and are such that the integrals
in (3.1)–(3.3) are convergent, and

Lj (ξ, y) = ξ cos ξy − Kj sin ξy, j = 1, 2.

In order to determine the unknown constants R, T , α, β and the unknown functions
A(ξ ), B(ξ ), C(ξ ), D(ξ ), the conditions of continuity of φ(x, y) and φx(x, y) across the
lines x = 0 and x = l (y > 0) are used. These give rise to the following four equations
involving the unknown constants and the functions, valid for y > 0:

e−K1y(1 + R) +
2

π

∫ ∞

0

A(ξ )

ξ 2 + K2
1

L1(ξ, y) dξ

= e−K2y(α + βeiK2l) +
2

π

∫ ∞

0

B(ξ ) + C(ξ )

ξ 2 + K2
2

L2(ξ, y) dξ, y > 0, (3.4)
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iK1e
−K1y(1 − R) +

2

π

∫ ∞

0

ξA(ξ )

ξ 2 + K2
1

L1(ξ, y) dξ

= iK2e
−K2y(α − βeiK2l) +

2

π

∫ ∞

0

ξ (B(ξ ) − C(ξ ))

ξ 2 + K2
2

L2(ξ, y) dξ, y > 0, (3.5)

e−K2y(αeiK2l + β) +
2

π

∫ ∞

0

B(ξ )eξ l + C(ξ )e−ξ l

ξ 2 + K2
2

L2(ξ, y) dξ

= T e−K1y +
2

π

∫ ∞

0

D(ξ )

ξ 2 + K2
1

L1(ξ, y) dξ, y > 0, (3.6)

iK2e
−K2y(αeiK2l − β) +

2

π

∫ ∞

0

ξ (B(ξ )eξ l − C(ξ )e−ξ l)

ξ 2 + K2
2

L2(ξ, y) dξ

= iK1T e−K1y − 2

π

∫ ∞

0

ξD(ξ )

ξ 2 + K2
1

L1(ξ, y) dξ, y > 0. (3.7)

All the above four equations are basically of the form

χ(y) = ψ0e
−Ky +

∫ ∞

0

χ̂ (ξ )L(ξ, y) dξ, y > 0 (3.8)

with

L(ξ, y) = ξ cos ξy − K sin ξy,

where the function χ(y) defined for y > 0, is piecewise-continuously differentiable
and absolutely integrable on (0, ∞). The constant ψ0 and the function χ̂(ξ ) are given
by (cf. Ursell 1947)

ψ0 = 2K

∫ ∞

0

ψ(u)e−Ku du, (3.9a)

χ̂ (ξ ) =
2

π

1

ξ 2 + K2

∫ ∞

0

ψ(u)L(ξ, u) du. (3.9b)

This is generally referred to as the Havelock’s inversion theorem in the water wave
literature.

Application of this theorem to equations (3.4) to (3.7) (using the results (3.9b)
and (3.9a) in each equation) produces the following eight relations (after some
simplifications):

A(ξ ) = − (K1 − K2)ξ

ξ 2 + K2
2

(α + βeiK2l) +
(ξ 2 + K1K2){B(ξ )e−ξ l + C(ξ )}

ξ 2 + K2

+
2

π
(K1 − K2)ξ

∫
−

∞

0

u{B(u)e−ul + C(u)}(
u2 + K2

2

)
(u2 − ξ 2)

du, (3.10)

ξA(ξ ) = − iK2(K1 − K2)(α − βeiK2l)ξ

ξ 2 + K2
2

+
ξ (ξ 2 + K1K2)

ξ 2 + K2
2

{B(ξ )e−ξ l − C(ξ )}

+
2

π
(K1 − K2)ξ

∫
−

∞

0

u2{B(u)e−ul − C(u)}(
u2 + K2

2

)
(u2 − ξ 2)

du, (3.11)
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D(ξ ) = − (K1 − K2)(αeiK2l + β)ξ

ξ 2 + K2
2

+
(ξ 2 + K1K2){B(ξ ) + C(ξ )e−ξ l}

ξ 2 + K2
2

+
2

π
(K1 − K2)ξ

∫
−

∞

0

{B(u) + C(u)e−ul}(
u2 + K2

2

)
(u2 − ξ 2)

u du, (3.12)

ξD(ξ ) =
iK2(K1 − K2)(αeiK2l − β)ξ

ξ 2 + K2
2

− ξ (ξ 2 + K1K2){B(ξ ) − C(ξ )e−ξ l}
ξ 2 + K2

2

− 2

π
(K1 − K2)ξ

∫
−

∞

0

u2{B(u) − C(u)e−ul}(
u2 + K2

2

)
(u2 − ξ 2)

du, (3.13)

1 + R

2K1

=
α + βeiK2l

K1 + K2

+
2

π
(K1 − K2)

∫ ∞

0

ξ{B(ξ )e−ξ l + C(ξ )}(
ξ 2 + K2

1

)(
ξ 2 + K2

2

) dξ, (3.14)

i(1 − R)

2
=

iK2(α − βeiK2l)

K1 + K2

+
2

π
(K1 − K2)

∫ ∞

0

ξ 2{B(ξ )e−ξ l − C(ξ )}(
ξ 2 + K2

1

)(
ξ 2 + K2

2

) dξ, (3.15)

T

2K1

=
αeiK2l + β

K1 + K2

+
2

π
(K1 − K2)

∫ ∞

0

ξ{B(ξ ) + C(ξ )e−ξ l}(
ξ 2 + K2

1

)(
ξ 2 + K2

2

) dξ, (3.16)

iT

2
=

iK2(αeiK2l − β)

K1 + K2

+
2

π
(K1 − K2)

∫ ∞

0

ξ 2{B(ξ ) − C(ξ )e−ξ l}(
ξ 2 + K2

1

)(
ξ 2 + K2

2

) dξ. (3.17)

The integrals in (3.10) to (3.13) are in the sense of Cauchy principal value (CPV). It
will be seen later that the last four relations will serve the purpose of determination
of the four unknown constants.

Elimination of A(ξ ) between (3.10) and (3.11), and D(ξ ) between (3.12) and (3.13)
yields

λ(ξ )B1(ξ ) +
1

π

∫
−

∞

0

B1(u)

u − ξ
du − 1

π

∫ ∞

0

C1(u)

u + ξ
e−ul du = FB(ξ ), ξ > 0, (3.18)

λ(ξ )C1(ξ ) +
1

π

∫
−

∞

0

C1(u)

u − ξ
du − 1

π

∫ ∞

0

B1(u)

u + ξ
e−ul du = FC(ξ ), ξ > 0 (3.19)

where

(B1(ξ ), C1(ξ )) =
ξ

ξ 2 + K2
2

(B(ξ ), C(ξ )), (3.20)

λ(ξ ) =
ξ 2 + K1K2

ξ (K1 − K2)
, (3.21)

FB(ξ ) =
α

2

eiK2l

ξ − iK2

+
β

2

1

ξ + iK2

, (3.22)

FC(ξ ) =
β

2

eiK2l

ξ − iK2

+
α

2

1

ξ + iK2

. (3.23)

Equations (3.18) and (3.19) are two coupled Carleman-type singular integral
equations for determining the unknown functions B(ξ ) and C(ξ ). One way to decouple
these equations and to solve them approximately is to assume the width of the strip
l to be sufficiently large. Then the integrals involving negative exponentials can be
neglected in the first approximation. Gayen(Chowdhury) et al. (2005) utilized this idea
to solve similar integral equations arising in the problem of water wave scattering
by an ice strip modelled as a thin elastic plate, by an iterative process, and also
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obtained numerical estimates for the eight unknown constants occurring in them.
This was valid for a sufficiently wide strip. However, if the breadth of the strip is
moderate, this iterative process is not applicable, and here a new method is presented
which enables us to solve the coupled singular integral equations for any width of the
strip.

It may be mentioned here that equations (3.18) and (3.19) can also be decoupled
by addition and subtraction. In that case also the decoupled equations can either
be solved approximately by the assumption of a wide strip or by the method to be
described in the next section. A brief description of this is given in § 6.

4. Solution after reducing to Fredholm integral equations
Our aim is to solve the two singular integral equations (3.18) and (3.19) for any l,

the width of the strip. To do this we write (3.18) and (3.19) in operator form as

SB1(ξ ) + S′C1(ξ ) = FB(ξ ), ξ > 0, (4.1)

SC1(ξ ) + S′B1(ξ ) = FC(ξ ), ξ > 0, (4.2)

where the operators S and S′ are defined by

Sf (ξ ) = λ(ξ )f (ξ ) +
1

π

∫
−

∞

0

f (u)

u − ξ
du,

S′f (ξ ) = − 1

π

∫ ∞

0

f (u)e−ul

u + ξ
du

⎫⎪⎪⎬⎪⎪⎭ , ξ > 0. (4.3)

We note that the operator S involves a CPV integral while S′ is a regular integral
operator.

It is observed that the Carleman singular integral equation

Sf (ξ ) = h(ξ ), ξ > 0 (4.4)

can be solved by reducing it to the following Riemann–Hilbert problem (RHP):

[λ(ξ ) + i]Λ+(ξ ) − [λ(ξ ) − i]Λ−(ξ ) = h(ξ ), ξ > 0, (4.5)

where Λ±(ξ ) are the limiting values of the sectionally analytic function Λ(ζ ) defined
by the relation

Λ(ζ ) =
1

2πi

∫ ∞

0

f (u)

u − ζ
du (4.6)

in the complex ζ -plane (ζ = ξ + iη) cut along the real axis from ξ = 0 to ∞. Solving
the RHP (4.5) in the usual manner (see Gakhov 1966) we find that the solution of
the Carleman singular integral equation (4.4) is obtained as

f (ξ ) = S−1h(ξ ) =
Λ+

0 (ξ )

λ(ξ ) − i
Ŝ

[
h(ξ )

Λ+
0 (ξ )(λ(ξ ) − i)

]
, ξ > 0, (4.7)

where the operator Ŝ is defined by

Ŝf (ξ ) = λ(ξ )f (ξ ) − 1

π

∫
−

∞

0

f (u)

u − ξ
du, ξ > 0, (4.8)

and

Λ+
0 (ξ ) = lim

ζ→ξ+i0
Λ0(ζ ),
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where

Λ0(ζ ) = exp

[
1

2πi

{ ∫ ∞

0

(
ln

t − iK1

t + iK1

− 2πi

)
dt

t − ζ

−
∫ ∞

0

(
ln

t − iK2

t + iK2

− 2πi

)
dt

t − ζ

}]
, ζ /∈ (0, ∞) (4.9)

is a solution of the homogeneous problem corresponding to the RHP (4.5).
We now apply the operator S−1 to (4.1) to obtain

B1(ξ ) = S−1[FB(ξ ) − S′C1(ξ )], ξ > 0, (4.10)

which when substituted into (4.2) produces

SC1(ξ ) + S′[S−1(FB − S′C1)](ξ ) = FC(ξ ), ξ > 0. (4.11)

Applying the operator S−1 to both sides of (4.11), we find

[I − L2]C1(ξ ) = r(ξ ), ξ > 0, (4.12)

where the operator L = S−1S′ is ultimately given by (see Appendix A)

Lm(ξ ) = − 1

π

Λ+
0 (ξ )

λ(ξ ) − i

∫ ∞

0

m(u)e−ul du

(u + ξ )Λ0(−u)
(4.13)

and

r(ξ ) = S−1[FC − S′S−1FB](ξ ), ξ > 0. (4.14)

It may be noted that the operator S−1S′ is not commutative.
Now FB(ξ ) and FC(ξ ) are substituted from (3.22) and (3.23) into (4.14) to obtain

r(ξ ) in the form

r(ξ ) = αr1(ξ ) + βr2(ξ )

where

r1(ξ ) =
1

2c

Λ+
0 (ξ )

λ(ξ ) − i

[
1

ξ + iK2

+
eiK2l

π

∫ ∞

0

Λ+
0 (u)e−ul du

(λ(u) − i)(u + ξ )(u − iK2)Λ0(−u)

]
(4.15)

and

r2(ξ ) =
1

2c

Λ+
0 (ξ )

λ(ξ ) − i

[
eiK2l

ξ − iK2

+
1

π

∫ ∞

0

Λ+
0 (u)e−ul du

(λ(u) − i)(u + ξ )(u + iK2)Λ0(−u)

]
(4.16)

with

c = Λ0(±iK2) =

(
2K2

K1 + K2

)1/2

.

We now define two functions U (ξ ) and V (ξ ) for ξ > 0 such that

[I + L]C1(ξ ) = U (ξ ), [I − L]C1(ξ ) = V (ξ ), ξ > 0 (4.17)

so that

C1(ξ ) = 1
2
[U (ξ ) + V (ξ )], L C1(ξ ) = 1

2
[U (ξ ) − V (ξ )], ξ > 0. (4.18)

Then the integral equation (4.12) can be written either as

[I + L]V (ξ ) = r(ξ ), ξ > 0 (4.19)

or as

[I − L]U (ξ ) = r(ξ ), ξ > 0. (4.20)
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Since

r(ξ ) = αr1(ξ ) + βr2(ξ ),

we may express U (ξ ), V (ξ ) as

U (ξ ) = [I − L]−1r(ξ ) = αu1(ξ ) + βu2(ξ ), (4.21)

V (ξ ) = [I + L]−1r(ξ ) = αv1(ξ ) + βv2(ξ ), (4.22)

where uj (ξ ), vj (ξ ) (j = 1, 2), ξ > 0 are unknown functions.
The integral equation (4.19) along with the relation (4.21), and the integral equ-

ation (4.20) along with the relation (4.22) are satisfied if uj (ξ ), vj (ξ ) (j = 1, 2) satisfy

[I − L]u1(ξ ) = r1(ξ ), ξ > 0, [I − L]u2(ξ ) = r2(ξ ), ξ > 0,

[I + L]v1(ξ ) = r1(ξ ), ξ > 0, [I + L]v2(ξ ) = r2(ξ ), ξ > 0.

}
(4.23)

These are in fact Fredholm integral equations with regular kernels, the integral
operator L being defined in (4.13). These integral equations are solved numerically by
Nystrom’s method and then the functions uj (ξ ), vj (ξ ) (j = 1, 2) are found numerically.
It may be noted that considerable analytical calculations are required to reduce the
functions rj (ξ ) (j = 1, 2) to forms suitable for numerical computation. This is described
in the Appendix B.

The functions B1(ξ ) and C1(ξ ) which satisfy the two coupled singular integral
equations (3.18) and (3.19) are now found in a straightforward manner as

B1(ξ ) = (S−1FB)(ξ ) − LC1(ξ )

= (S−1FB)(ξ ) − 1
2
{U (ξ ) − V (ξ )}

= αBα
1 (ξ ) + βB

β

1 (ξ ), (4.24)

C1(ξ ) = 1
2
{U (ξ ) + V (ξ )} = αCα

1 (ξ ) + βC
β

1 (ξ ), (4.25)

where

Bα
1 (ξ ) =

1

2

[
Λ+

0 (ξ )eiK2l

c(λ(ξ ) − i)(ξ − iK2)
− u1(ξ ) + v1(ξ )

]
, (4.26)

B
β

1 (ξ ) =
1

2

[
Λ+

0 (ξ )

c(λ(ξ ) − i)(ξ + iK2)
− u2(ξ ) + v2(ξ )

]
, (4.27)

Cα
1 (ξ ) = 1

2
{u1(ξ ) + v1(ξ )}, (4.28)

C
β

1 (ξ ) = 1
2
{u2(ξ ) + v2(ξ )}; (4.29)

the value of the constant c being given after equation (4.16).
Thus B1(ξ ) and C1(ξ ) are obtained in terms of the unknown constants α and β . We

now replace these functions in equations (3.14)–(3.17) by their expressions in (4.24)
and (4.25). This results in a system of four linear equations in α, β, R and T . These
equations are solved numerically and the numerical estimates for the reflection and
transmission coefficients are computed for different sets of prescribed parameters.
Details about how the four linear equations are obtained are given in Appendix C.

5. Numerical results
Owing to the principle of conservation of energy, |R|2 + |T |2 = 1. Because of this,

we present only the numerical estimates for the reflection coefficient |R|. This energy
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Figure 1. |R| for different values of the strip width and ε1/L = 0: (a) ε2/L = 0.01 and
l/L = 0.1, 0.5, 1.0 and 1.5; (b) ε2/L = 0.01 and l/L = 1, 5 and 10; (c) ε2/L = 0.1 and
l/L = 1, 2 and 3.

identity can also be used as a check on the numerical results, which has been done
here for all the data points. A characteristic length L, with respect to which the strip
width can be regarded as wide or moderate (l/L large or moderate), is introduced
to non-dimensionalize the quantities εj (j = 1, 2), l and K−1. Figure 1(a–c) represents
|R| against the non-dimensional wavenumber KL for a strip of inertial surface
floating sandwiched between two semi-infinite free surfaces, i.e. ε1 = 0 and ε2/L = 0.01
for figures 1(a) and 1(b) and ε2/L = 0.1 for figure 1(c). Figure 1(a) depicts |R| for
smaller values of the strip width l/L. The overall values of |R| are less than 0.03 in
figure 1(a), showing that for a strip of sufficiently small width, only a small amount of
the incident wave energy is reflected back. As the strip width increases |R| fluctuates
and the occurrence of zeros of |R| is observed. This feature is prominent in figure 1(b),
showing that for larger strip widths (l/L = 5, 10) the number of zeros of |R| increases.
In figure 1(c) a heavier strip is considered (ε2/L = 0.1). Here also an increase in the
number of zeros of |R| with the increase in strip width occurs. Also the overall values
of |R| are increased as the surface density of the material of strip increases.
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Figure 2. |R| for ε1/L = 0, l/L = 10 and (a) ε2/L = 0.1 and (b) ε2/L = 0.01. Crosses
denote data obtained by Kanoria et al. (1999). The line represents corresponding data from
the present analysis.
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Figure 3. |R| for ε1/L = 0.1, ε2/L = 0 and different values of the strip width:
l/L = 1, 2 and 3.

In figures 2(a) and 2(b) the present results are compared with those of Kanoria
et al. (1999) for a wide strip. The data for |R| computed under the assumption of wide
strip are indicated by crosses in figures 2(a) and 2(b). These are seen to lie exactly on
the curves for the data obtained following the present method. This provides a good
check on the validity of the results obtained here.

If the strip is termed as a scatterer, then the product (|ε2 − ε1|K)(Kl) is defined as
its strength. Since 0 <ε1K and ε2K < 1, |ε2 − ε1|K is less than unity, so the strength
can be increased by increasing Kl. Hence an increase in strip width (l/L) means an
increase in the strength of the scatterer. A wide strip is thus a strong scatterer. Most
of the figures show that as l/L increases, |R| becomes more oscillatory with increasing
amplitude, as expected.

Figure 3 shows |R| for ε1/L = 0.1, ε2/L =0 and l/L = 1, 2, 3, i.e. for the case when
there is a gap of finite width between two semi-infinite inertial surfaces of the same
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Figure 4. |R| for two complementary cases. IS2: ε1/L = 0, ε2/L = 0.1; FS2: ε1/L = 0.1,
ε2/L = 0 (l/L = 2). IS3: ε1/L = 0, ε2/L = 0.1; FS3: ε1/L = 0.1, ε2/L = 0 (l/L = 3).
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Figure 5. |R| for non-zero surface densities. ε1/L = 0.02 ε2/L = 0.05, l/L = 1, 2 and 3.

surface density. In this case the number of zeros of |R| increases with the increase in
the strip width, as was observed in figure 1.

The two complementary cases, when the intermediate surface is composed of an
inertial surface surrounded by a free surface or a free surface surrounded by inertial
surface are compared in figure 4 for l/L = 2, 3. The continuous lines IS2 and IS3

represent |R| for the case of scattering by a strip of inertial surface floating between
free surfaces for l/L = 2 and 3 respectively while the dotted lines FS2 and FS3 show
|R| for the complementary case for l/L of the same order. From this figure it is
observed that the zeros of |R| for a strip of inertial surface are shifted towards the
left of those for a strip of free surface.

For the general case of two non-zero inertial surfaces (ε1/L = 0.02, ε2/L = 0.05), the
effect of strip width is depicted in figure 5 which shows similar features of the curves
as in figures 1, 3, 4.
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Figure 6. |R| for non-zero surface densities with l/L = 2.
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Figure 7. |R| for a strip floating on the water surface vs. its surface density for two different
wavelengths. l/L = 2, ε1/L = 0, KL = 3 and 5.

Figure 6 shows |R| associated with a strip which is heavier or lighter compared to
the surrounding surfaces. When the strip is heavier, more multiple reflection occurs
than when the strip is lighter.

In figure 7, |R| is depicted against the surface density parameter ε2/L of a strip
surrounded by free surface (ε1/L = 0) for two different wavenumbers (KL = 3, 5) and
l/L = 2. It is observed that for smaller wavenumber (KL = 3) there is no reflection
for ε1/L < 0.02. However, with the increase in the surface density parameter ε2/L, the
amount of reflection gradually increases. The is also true for KL = 5 but in this case
the curve for |R| is more oscillatory in nature versus ε2/L.

6. Discussion
(a) Carleman singular integral equations occur in a natural way when handling

the mixed bunudary value problem (BVP) described in § 2, when a Fourier analysis
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is employed directly to the various conditions of the given BVP in conjunction with
Havelock’s inversion theorem. Note that the same problem could have been solved
by the use of the Wiener–Hopf technique. However, to use the WH technique for
such a BVP, some additional assumptions are needed on the boundary condition, the
governing partial differential equation, the addition of a small imaginary part to a real
parameter, etc. These are artificial. The present method of reduction of the problem
to Carleman singular integral equations requires no such artificial assumptions.

(b) It has been mentioned in § 3 that the integral equations (3.18) and (3.19) can be
decoupled on the assumption of large strip width. However, these can be decoupled
simply by addition and subtraction in the following manner:
if we define

p(ξ ) = B1(ξ ) + C1(ξ ), q(ξ ) = B1(ξ ) − C1(ξ ) (6.1)

then addition and the subtraction of equations (3.18) and (3.19) produce

λ(ξ )p(ξ ) +
1

π

∫
−

∞

0

p(u)

u − ξ
du − 1

π

∫ ∞

0

p(u)

u + ξ
e−ul du = F1(ξ ), (6.2)

λ(ξ )q(ξ ) +
1

π

∫
−

∞

0

q(u)

u − ξ
du +

1

π

∫ ∞

0

q(u)

u + ξ
e−ul du = F2(ξ ), (6.3)

where

F1(ξ ), F2(ξ ) = FB(ξ ) ± FC(ξ ). (6.4)

The two equations (6.2) and (6.3) are not coupled. However, these cannot be solved
directly unless l is assumed to be sufficiently large. To solve these integral equations
a similar approach as used in § 4 may be employed. This is described here briefly.
By virtue of (4.3), (6.2) and (6.3) reduce to

Sp(ξ ) + S′p(ξ ) = F1(ξ ), (6.5)

Sq(ξ ) − S′q(ξ ) = F2(ξ ). (6.6)

Applying the operator S−1 to the above equations we find that

[I + L] p(ξ ) = S−1F1(ξ ), (6.7)

[I − L] q(ξ ) = S−1F2(ξ ), (6.8)

where the operator L = S−1S′ is defined in (4.13).
The right-hand sides of (6.7) and (6.8) are of the form

S−1Fj (ξ ) = αF α
j (ξ ) + βF

β
j (ξ ), j = 1, 2, (6.9)

so that

p(ξ ) = [I + L]−1
(
αF α

1 (ξ ) + βF
β

1 (ξ )
)

= αpα(ξ ) + βpβ(ξ ) (6.10)

and

q(ξ ) = [I − L]−1
(
αF α

2 (ξ ) + βF
β

2 (ξ )
)

= αqα(ξ ) + βqβ(ξ ), (6.11)

where pα(ξ ), pβ(ξ ), qα(ξ ), qβ(ξ ) are to be found.
Comparing (6.7) and (6.8) (together with (6.9)) to (6.10) and (6.11) we see that
equations (6.7) and (6.8) will be satisfied if the functions pα(ξ ), pβ(ξ ), qα(ξ ), qβ(ξ )
satisfy the following Fredholm integral equations of the second kind:

[I + L]pα(ξ ) = F α
1 (ξ ), [I + L]pβ(ξ ) = F

β

1 (ξ ),

[I − L]qα(ξ ) = F α
2 (ξ ), [I − L]qβ(ξ ) = F

β

2 (ξ ).

}
(6.12)
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Once the four equations (6.12) are solved numerically the functions p(ξ ) and q(ξ ) can
be found in terms of α and β using (6.10) and (6.11) and then B1(ξ ) and C1(ξ ) will be
determined from (6.1). In this alternative method of solving the Carleman equations
one has also to solve numerically four Fredholm integral equations.

(c) Although by this method the reflection coefficient (|R|) is determined
numerically, it is not possible to interpret analytically the positions of its zeros
as a function of KL. On the other hand, if the same problem is solved by using the
Wiener–Hopf technique for a wide strip, an approximate form for R can be obtained.
From this the zeros of |R| can be found analytically by solving a transcendental
equation, in principle. However, this equation may not have analytical solutions, and
will have to be solved numerically using standard methods.

7. Conclusion
The problem of wave diffraction by a strip of inertial surface floating sandwiched

between other inertial surfaces is investigated here. The mathematical method
employed essentially involves application of a mixed Fourier transform to solve the
boundary value problem describing the physical problem, which eventually leads to
solving two Carleman singular integral equations. These equations can be solved
by an iterative process which is valid only for large width of the strip as in
Gayen(Chowdhury) et al. (2005). A newly developed method valid for any width
of the strip is employed in the present work leading to solving four Fredholm
integral equations. Finally, the reflection and transmission coefficients are determined
by solving a system of linear equations numerically and the numerical results for
the reflection coefficient |R| are presented in a number of figures. The results are
compared with the known results for a wide strip obtained by Kanoria et al. (1999)
and excellent agreement between these two results is seen. Other graphs of |R| for
strips of moderate widths are also presented.

Our approach provides a general technique to handle problems associated with
wave diffraction by a strip or a slit. It can be generalized to study the effect of a
floating elastic plate of finite width or a slit in a floating elastic plate. The problem
can also be extended to the case of one or more identical strips separated by a finite
distance.

The authors thank the reviewers for their remarks and suggestions to improve the
paper in the present form. This work is financially supported by NBHM (through a
postdoc fellowship to R. G.) and DST (through a research project no. SR/S4/MS:
263/05).

Appendix A. The operator L
In this Appendix the form of the integral operator L as given by (4.13) is derived.
Using the definitions of the integral operators S and S′ as given in (4.3), (4.7) it

is easy to see that

Lm(ξ ) = (S−1S′)m(ξ )

=
Λ+

0 (ξ )

λ(ξ ) − i

[
λ(ξ )

Λ+
0 (ξ )(λ(ξ ) + i)

(
− 1

π

∫ ∞

0

m(u)e−ul

u + ξ
du

)
+

1

π2

∫ ∞

0

m(u)e−ul du

(∫
−

∞

0

dt

Λ+
0 (t)(λ(t) + i)(t + u)(t − ξ )

)]
. (A 1)
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To evaluate the inner integral in the second term of (A1), we consider the integral∫
Γ

dτ

Λ0(τ )(τ + u)(τ − ζ )
, ζ /∈ Γ, (A 2)

where Λ0(ζ ) satisfies the homogeneous RHP

[λ(ξ ) + i]Λ+(ξ ) − [λ(ξ ) − i]Λ−(ξ ) = 0, ξ > 0, (A 3)

in the complex ζ -plane cut along the positive real axis and Γ is a positively oriented
contour consisting of a loop around the positive real axis having indentations above
the point ζ = ξ + i0 and below the point ζ = ξ − i0 and a circle of large radius with
centre at the origin in the complex τ -plane.

We observe that∫
Γ

dτ

Λ0(τ )(τ + u)(τ − ζ )
=

∫ ∞

0

{
1

Λ+
0 (t)

− 1

Λ−
0 (t)

}
dt

(t + u)(t + ζ )

= 2i

∫ ∞

0

dt

Λ+
0 (t)(λ(t) + i)(t + u)(t − ζ )

(A 4)

after using (A 3).
Also from the residue calculus theorem,∫

Γ

dτ

Λ0(τ )(τ + u)(τ − ζ )
=

2πi

u + ζ

{
1

Λ0(ζ )
− 1

Λ0(−u)

}
. (A 5)

Comparing (A 4) and (A 5) we find

1

u + ζ

{
1

Λ0(ζ )
− 1

Λ0(−u)

}
=

1

2πi

∫ ∞

0

2i dt

Λ+
0 (t)(λ(t) + i)(t + u)(t − ζ )

.

Applying Plemelj’s formulae to the above relation the inner integral in the second
term on the right-hand side of (A 1) is evaluated as∫

−
∞

0

dt

Λ+
0 (t)(λ(t) + i)(t + u)(t − ξ )

=
π

u + ξ

{
λ(ξ )

(λ(t) + i)Λ+
0 (ξ )

− 1

Λ0(−u)

}
which when substituted into (A 1), produces

Lm(ξ ) = − 1

π

Λ+
0 (ξ )

λ(ξ ) − i

∫ ∞

0

m(u)e−ul du

(u + ξ )Λ0(−u)
.

Appendix B. Simplification of r1(ξ ) and r2(ξ )

The basic step for the evaluation of the integral equations (4.23) and the functions
r1(ξ ) and r2(ξ ) is to determine the functions Λ0(−ξ ) and Λ+

0 (ξ ) for ξ > 0 in computable
forms. In this Appendix we present an explicit derivation of these functions and also
simplify r1(ξ ) and r2(ξ ).

The function Λ+
0 (ξ ) is given by

Λ+
0 (ξ ) =

(
ξ − iK1

ξ + iK1

ξ + iK2

ξ − iK2

)1/2

exp

⎛⎜⎜⎝ 1

2πi

∫
−

∞

0

ln

(
t − iK1

t + iK1

t + iK2

t − iK2

)
t − ξ

dt

⎞⎟⎟⎠ , ξ > 0.

(B 1)
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If we define

Y (ξ ) =
1

2πi

∫
−

∞

0

ln

(
t − iK1

t + iK1

t + iK2

t − iK2

)
t − ξ

dt, ξ > 0,

Yj (ξ ) =
1

2πi

∫
−

∞

0

ln
t − iKj

t + iKj

dt

t − ξ
(j = 1, 2), ξ > 0,

X(ξ ) = Y (−ξ ) and Xj (ξ ) = Yj (−ξ ), ξ > 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(B 2)

then

Y (ξ ) = Y1(ξ ) − Y2(ξ ), Λ0(−ξ ) = exp(X(ξ )),

Λ+
0 (ξ ) =

(
ξ − iK1

ξ + iK1

ξ + iK2

ξ − iK2

)1/2

exp(Y (ξ )).

⎫⎪⎬⎪⎭ (B 3)

Following Varley & Walker (1989) the derivative of Yj (ξ ) is found to be

Y ′
j (ξ ) = −Kj

2π

[
ln(ξ/(−iKj ))

ξ (ξ + iKj )
+

ln(ξ/(iKj ))

ξ (ξ − iKj )

]
, j = 1, 2.

It may be observed that Yj (∞) = 0. Integration of Y ′
j (ξ ) gives

Yj (ξ ) = −Kj

2π

∫ ξ

∞

[
ln(t/(−iKj ))

t(t + iKj )
+

ln(t/(iKj ))

t(t − iKj )

]
dt

= − 1

2πi

∫ iKj /ξ

−iKj /ξ

ln u

u − 1
du.

(B 4)

After some manipulations Y (ξ ) reduces to

Y (ξ ) =
1

4
ln

ξ − iK1

ξ − iK2

− 3

4
ln

ξ + iK1

ξ + iK2

− 1

π

∫ K1/ξ

K2/ξ

ln v

v2 + 1
dv. (B 5)

Hence Λ+
0 (ξ ) has the alternative form

Λ+
0 (ξ ) =

(
ξ − iK1

ξ − iK2

)1/2 (
ξ + iK1

ξ + iK2

)−1/2

exp (Y (ξ ))

=

(
ξ − iK1

ξ − iK2

)3/4 (
ξ + iK1

ξ + iK2

)−5/4

E(ξ )

=

(
ξ 2 + K2

1

ξ 2 + K2
2

)−1/4

e−2i(θ1−θ2)E(ξ ) (B 6)

where θj = tan−1(Kj/ξ ), j = 1, 2, and

E(ξ ) = exp

(
− 1

π

∫ K1/ξ

K2/ξ

ln v

v2 + 1
dv

)
. (B 7)

X(ξ ) is simplified in a similar manner and we find that

Xj (ξ ) = Yj (−ξ ) = −Yj (ξ ), j = 1, 2.
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Thus X(ξ ) = −Y (ξ ), and

Λ0(−ξ ) = exp (X(ξ ))

=

(
ξ − iK1

ξ − iK2

)−1/4 (
ξ + iK1

ξ + iK2

)3/4

(E(ξ ))−1

=

(
ξ 2 + K2

1

ξ 2 + K2
2

)1/4

ei(θ1−θ2) (E(ξ ))−1 .

(B 8)

The various complex-valued functions appearing in r1(ξ ) and r2(ξ ) are simplified
as follows:

(a)
Λ+

0 (ξ )

λ(ξ ) − i
= (K1 − K2)ξ

(
ξ 2 + K2

1

)−3/4(
ξ 2 + K2

2

)−1/4
e−i(θ1−θ2)E(ξ )

where we have used

λ(ξ ) − i =
(ξ − iK1)(ξ + iK2)

ξ (K1 − K2)
. (B 9)

(b)
Λ+

0 (ξ )

λ(ξ ) − i

1

Λ0(−ξ )
=

(K1 − K2)ξ

ξ 2 + K2
1

e−2i(θ1−θ2) (E(ξ ))2 .

(c)
Λ+

0 (ξ )

λ(ξ ) − i

1

Λ0(−ξ )

(
1

ξ − iK2

,
1

ξ + iK2

)
=

(K1 − K2)ξe−2iθ1(
ξ 2 + K2

1

)(
ξ 2 + K2

2

)1/2
(E(ξ ))2(e3iθ2, eiθ2 ).

(d)
Λ+

0 (ξ )

λ(ξ ) − i

(
1

ξ − iK2

,
1

ξ + iK2

)
=

(K1 − K2)ξe−iθ1((
ξ 2 + K2

1

)(
ξ 2 + K2

2

))3/4
E(ξ )(e2iθ2, 1).

Using (a) to (d), r1(ξ ) and r2(ξ ) are simplified as

r1(ξ ) = r0(ξ )

⎡⎣ 1(
ξ 2 + K2

2

) 1
2

+ eiK2l

∫ ∞

0

M(u, ξ )e3iψ2 du

⎤⎦ ,

r2(ξ ) = r0(ξ )

⎡⎣ ei(K2l+2θ2)(
ξ 2 + K2

2

) 1
2

+

∫ ∞

0

M(u, ξ )eiψ2 du

⎤⎦,

where

r0(ξ ) =
K1 − K2

π

ξE(ξ )e−iθ1(
ξ 2 + K2

1

)3/4

(
ξ 2 + K2

2

)1/4
,

M(u, ξ ) =
K1 − K2

2c

ue−ul (E(ξ ))2 ei(θ2−2ψ1)(
u2 + K2

1

)(
u2 + K2

2

)1/2
(u + ξ )

and ψj = tan−1(Kj/u); j = 1, 2.

Appendix C. Determination of α, β, R and T

We first replace B(ξ ) and C(ξ ) in (3.14) to (3.17) in terms of B1(ξ ) and C1(ξ ) using
(3.20), then B1(ξ ) and C1(ξ ) in terms of (4.24) and (4.25) involving α and β . This gives
rise to four equations for the determination of the four unknown constants α, β, R
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and T . Eliminating R and T from the first two and the last two of these equations
respectively, we obtain two equations for α and β which when solved produce

α = −µ0

µ3λ8 + λ10

λ7λ10 − λ8λ9

, β = µ0

µ3λ7 + λ9

λ7λ10 − λ8λ9

, (C 1)

where

µ0 =

{(
K1 − K2

K1 + K2

)2

e2iK2l − 1

}
, µ3 =

K1 − K2

K1 + K2

eiK2l ,

λ7 = 1 − µ0(λ3,l − λ4), λ8 = µ0(λ5,l − λ6),

λ9 = µ0(λ4,l − λ3), λ10 = 1 − µ0(λ6,l − λ5),

λj =

∫ ∞

0

fj (ξ )

ξ + iK1

dξ, λj,l =

∫ ∞

0

fj (ξ )e−ξ l

ξ − iK1

dξ, j = 3, 4, 5, 6,

f3(ξ ) = µ1B
α
1 (ξ ) − µ2C

α
1 (ξ ), f4(ξ ) = µ1C

α
1 (ξ ) − µ2B

α
1 (ξ ),

f5(ξ ) = µ1B
β

1 (ξ ) − µ2C
β

1 (ξ ), f6(ξ ) = µ1C
β

1 (ξ ) − µ2B
β

1 (ξ ),

µ1 =
2

πi
(K1 − K2), µ2 =

2

πi

(K1 − K2)
2

K1 + K2

eiK2l , (C 2)

and the functions Bα
1 (ξ ), Cα

1 (ξ ), Bβ

1 (ξ ) and C
β

1 (ξ ) are given by (4.26) to (4.29). These
can be reduced to numerically computable forms by using the calculations of Ap-
pendix B.

Once α and β are computed from (C 1), R can be determined directly from either
(3.14) or (3.15) and T from either (3.16) or (3.17), after writing B(ξ ) and C(ξ ) in
terms of B1(ξ ) and C1(ξ ) and the later functions in terms of α and β .
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